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Context and motivations
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Motivations
Planned introduction of wide area 
monitoring systems for power 
transmission networks [1]

Benefits power transmission 
networks [2]
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Motivations
Benefits power distribution systems

Monitoring

§ Real-time visualization and 
alarming

§ Real-time state estimation
§ Post-event analysis
§ Planning of grid reinfor-

cement due to excessive 
DER penetration

§ Asset management
§ Equipment misoperation
§ System health monitoring

Protection

§ Fault identification
§ Fault location
§ Fault isolation

Control

§ Voltage control
§ Line congestion management
§ Grid-aware control of distributed 

resources
§ Islanding (and back-synchronization to 

the main grid)
§ System restoration

Requirement: joint P+M class to avoid devices duplication 
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PMU accuracy requirements for 
distribution systems
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PMU accuracy requirements for the SE in DSs [3]
Compared to transmission networks, power distribution systems are characterized by:
§ Shorter line lengths (5-10 km max)
§ Lower feeder impedances
§ Reduced power flows (typically <10 MVA)

ê

Small amplitude and phase differences between bus voltage and line current 
synchrophasors measured in adjacent nodes.

Do we really need to measure such small angle differences ?

Additionally, waveform disturbances are more remarkable:
§ Harmonic distortion beyond the IEEE Std. C37.118 specs:

– Superposition of multiple harmonic components (see EN 50160)
– Harmonics superposed to (potential) inter-harmonics.

§ Higher measurement noise, particularly in the measured currents.
§ Faster dynamics related to the RER short-term volatility.
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PMU accuracy requirements for the SE in DSs [3]

Let us consider the use case of PMU-based state estimation (SE) in distribution systems.
Type, placement and accuracy of measurement devices have a significant impact on
the state estimation accuracy. Consequently, a specific sensitivity analysis may be
conducted with respect to these characteristics to analyze the SE performance.

The physical system: let us consider the simple case of a two-ports equivalent of a generic
passive reciprocal branch of a power grid.

Branch longitudinal admittance (known)

Branch shunt admittance (known)
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PMU accuracy requirements for the SE in DSs [3]

Six possible measurement configurations (with no redundancy):

Note that, since the two-ports branch equivalent is assumed to be reciprocal, configurations
c, d, e and f are interchangeable.
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PMU accuracy requirements for the SE in DSs [3]
The computed quantities (indicated with apex C) are derived by means of the auxiliary
matrices that correspond to the three considered measurement configurations (measured
quantities indicated with apexM):



SGSMA Tutorial – Distribution-Level PMUs and Applications – M. Paolone | 24.05.2021 10

PMU accuracy requirements for the SE in DSs [3]
The measurement model: measurements uncertainty and measurement configuration
play a crucial role on the evaluation of the accuracy of the computed quantities.
We are interested in quantifying the influence of the magnitude and phase measurement
errors separately. Therefore, the variation of the magnitude error, assuming a null phase
error, allows evaluating the effect of the magnitude error and vice versa.
As known, the performance of a PMU can be expressed in terms of total vector error (TVE).
The maximum magnitude error errm (respectively phase error errp) is calculated from the
assumed TVE by considering a null phase (respectively magnitude) error:

We simulate the measurements by adding to the true values of the measured quantities a 
randomly-generated noise (Δm for the magnitude and Δp for the phase) assumed to be 
Gaussian, white and with a standard deviation equal to 1/3 of the maximum error in 
order to cover the 99.7 % of the Gaussian distribution.
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PMU accuracy requirements for the SE in DSs [3]

The assessment procedure

1. A power flow is computed by imposing the powers at the end of the line, in order to
determine the true state of the system.

2. N sets of measurements are obtained by perturbing the true quantities inferred
from step 1 with randomly generated white noise. The selected number of draws is
equal to 104 in order to infer statistical distributions that are numerically significant.

3. N sets of computed quantities are calculated by applying the auxiliary matrices
of Slide #9 to each set of measurements. Then, we calculate the errors as the
difference between computed and true quantities.

4. The accuracy of the computed quantities is represented by the stds of the probability
distributions of the errors calculated in step 3.
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PMU accuracy requirements for the SE in DSs [3]

The numerical example

Parameters of typical overhead lines used in medium-voltage power distribution systems.

Imposed power flows at the end of the line, power factor equal to 0.9 (lagging).
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PMU accuracy requirements for the SE in DSs [3]

Numerical results

Measurement config #a. 

Accuracy of the mag 
and phase of 𝑰𝒃𝑪(same 
results are obtained for 
𝐼#$) as a fcn of the 
uncertainty of the mag 
and phase of the voltage 
measurements 
expressed in TVE %.

Note that the bottom curves exhibit a knee in the case of high measurement uncertainty. This is due to the fact that the phase 
error has an upper bound of π radians.
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PMU accuracy requirements for the SE in DSs [3]

Numerical results

Measurement config #b. 

Accuracy of the mag and 
phase of 𝑬𝒃𝑪(same results 
are obtained for 𝐸#$) as a 
fcn of the uncertainty of the 
mag and phase of the 
current measurements 
expressed in TVE %.

Note that the bottom curves exhibit a knee in the case of high measurement uncertainty. This is due to the fact that the phase 
error has an upper bound of π radians.
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PMU accuracy requirements for the SE in DSs [3]

Numerical results

Measurement config #c. 

Upper graphs show the
accuracy of the 
magnitude of 𝑬𝒃𝑪 and 𝑰𝒃𝑪
as a fcn of the uncertainty of 
the mag of 𝑬𝒆𝑴 and 𝑰𝒆𝑴
expressed in TVE %.
The two bottom graphs refer 
to the phase of the
above-mentioned quantities.
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Extension to complex 
distribution systems
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Extension to complex distribution systems [3-5]
§ Static SE: infers the system state by using only current time information (e.g.,

Weighted Least Squares – WLS – or Least Absolute Value methods).

WLS, LAV

Static SE
x(t)

Network topology 
+ model
Measurements
+ uncertainties

§ Recursive SE: takes into account information available from previous time steps
and predict the state vector in time (e.g., Kalman Filter – KF – method).

KF

Recursive SE

x(t)

Network topology + 
model

Measurements
+ uncertainties

Process model
+ uncertainties

Time
Update

“Prediction”

Measurement
Update

“Estimation”
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Estimation Equations

(1) Computation of the Kalman Gain:

(2) Estimation of the state

Prediction Equations

Prediction of the state:
!x t = Ax̂ t−1 +But−1
!Pt ≡ AP̂t−1A

T +Qt−1

K t =
!PtH

T (H !PtH
T +R)−1

x̂ t = !x t +K t (z t −H!x t )

P̂t ≡ (I−K tH) !Pt

!Pt

P̂t

Discrete Kalman Filter [5]

§ xt and xt-1 represent the state of the system in correspondence of time steps t and t-1, respectively;
§ ut-1 represents a set of uc control variables (independent from the system state) of the system at time step t -1;
§ wt-1 represents the system process noise assumed white and with a normal probability distribution;
§ A is a matrix linking that state of the system at time step t-1 with the one of the current time step t for the case

of null active injections and process noise;
§ B is a matrix that links the time evolution of the system state with the uc controls at time step t-1 for the case of

null process noise;
§ is the prediction error covariance matrix;
§ K is the Kalman gain;
§ is the estimation error covariance matrix.
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Since we are targeting power distribution systems, it is worth reminding that
the peculiar characteristics of these networks (e.g., high level of imbalance of
lines, loads, and Distributed Generators) require the adoption of 3-phase
unbalanced SE process.

Moreover, the adopted Discrete Kalman Filter (DKF)-SE relies only on
measurements provided by PMUs that allows for a measurement matrix H
consisting of constant elements, namely: zeros, ones, and elements of the
3-ph network compound admittance matrix.

Discrete Kalman Filter [5]
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Extension to complex distribution systems [3-5]
A DKF state estimator (DKF-SE) accuracy is evaluated for the following measurement configurations:
§ Conf. A: voltage phasors in every bus;
§ Conf. B: injected current phasors in the slack-bus and voltage phasors in the other buses;
§ Conf. C: injected current phasors in every bus;
§ Conf. D: voltage phasors in the slack-bus and injected current phasors in the other buses;
§ Conf. E: voltage and injected current phasors in every bus.
The assessment procedure
1. A power flow is computed by imposing the powers at the nodes of the system, in order to

determine the true state of the network.
2. N sets of measurements are obtained by perturbing the true quantities inferred from step 1

with randomly generated Gaussian noise. The selected number of draws is equal to 104. The
maximum errors errm and errp refer to the cumulated error of a PMU and a 0.1-class sensor.
Assuming the sensor error is predominant yields: errm = 0.1 % and errp = 1.5 mrad. The
corresponding TVE is equal to 0.18%;

3. Each set of measurements is then processed by the DKF-SE in order to get N sets of estimated
states. We calculate the estimation errors as the difference between estimated and true state

4. The SE accuracy is represented by the means and stds of the probability distributions of the
estimation errors calculated in step 3.



SGSMA Tutorial – Distribution-Level PMUs and Applications – M. Paolone | 24.05.2021 21

Extension to complex distribution systems [3-5]
The network
§ Modified 3-phase IEEE 13-bus distribution test feeder
§ 15 kV rated voltage.
§ Untransposed lines corresponding to the configuration 

#602.
§ Bus #650 represents the connection to a sub-transmission 

network characterized by a short circuit power Ssc = 300 
MVA and a ratio between real and imaginary parts of the 
short circuit impedance Rsc / Xsc = 0.1. The two lines 
connecting bus #633 to #634 and #671 to #692 are 
assumed to be 300 feet long.

Loading conditions
§ Case 1 (low-load scenario): each load absorbs 10 kVA.
§ Case 2 (high-load scenario): each load absorbs 1000 kVA.
§ In both cases the power is equally distributed among the 

three phases and a lag power factor of 0.9 is assumed.
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Extension to complex distribution systems [3-5]

Numerical results – Case 1 (low load scenario)
Means and stds of the estimation errors of magnitude/phase of voltages and injected currents
for each measurement config (only the largest error among the three phases is shown).

Nodal voltages Nodal injected currents
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Extension to complex distribution systems [3-5]

Numerical results – Case 2 (high load scenario)
Means and stds of the estimation errors of magnitude/phase of voltages and injected currents
for each measurement config (only the largest error among the three phases is shown).

Nodal voltages Nodal injected currents
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Extension to complex distribution systems [3-5]

Preliminary conclusions
§ Measurement configurations composed of only voltages or only currents (Conf. A and C)

are unable to provide accurate estimates in terms of currents and voltages, respectively.
A better estimation accuracy is achieved by using mixed voltage and current
measurements.

§ Conf. B, consisting mainly on voltage measurements, leads to major errors on the current
estimates, whilst Conf. D, composed mainly of current measurements, provides accurate
voltage and current estimates.

§ Conf. E improves only the voltage estimates compared to Conf. D.

§ Current measurements appears to be crucial for PMU-based linear state estimation
in distribution systems. This is due to the specific characteristics and operational
conditions of distribution systems resulting into reduced voltage magnitude
variations and phase displacements that can be comparable with the uncertainties of
the voltage phasor measurements.
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Extension to complex distribution systems [3-5]

Preliminary conclusions
§ As a consequence, measurement sets composed mainly of voltages (Conf. A and B)

result in large errors of the current estimates. For example, Conf. A requires
measurement uncertainties in the order of 10-6 % and 10-8 rad in order to get the
same SE accuracy of Conf. D. Note that such a phase accuracy is well below the
limit of currently available time synchronization systems.

§ Conf. D allows obtaining accurate voltage and current estimates irrespectively of
the network operating condition and with the minimum number of measurements.
The voltage and current estimation errors are always below 0.04 % in terms of magnitude
and 0.5 mrad in terms of phase. This accuracy is sufficient for a distribution system
operator to exploit most of the functionalities that can be associated to a SE
process, such as voltage control, line congestion management, optimal dispatch of
DERs.
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Fault Location and System 
Restoration (FLISR) 

using synchrophasor-based 
Real-Time State Estimation 

(RTSE)
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FLISR using synchrophasor-based RTSE

The importance of fault detection, fault location and quick power restoration 
is rapidly rising due to:
§ Increasing number of faults as load density increases;
§ More stringent requirements for SAIDI and SAIFI indexes to improve the 

quality of service;
§ Increasing number of “plug and play” DERs that continuously change the 

short-circuit levels

Cited from [Protection of Distribution Systems with Distributed Energy Resources, Cigre ́-CIRED 
WG B5-C6.26 Final Report ]

“ Current protection schemes are seen to be very rigid for the changing conditions in the 
network, so new adaptive solutions will be required in the future ”
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FLISR using synchrophasor-based RTSE

SE1 à WMR1

SE2 à WMR2

SE3 à WMR3

Line 1 Line 2 Line 3

All the SEs have
a similar WMR

Metric: compare 
WMR for all SEs

Normal operating conditions (no fault)

1

ˆ
WMR

i

jm
i ij

i z

z z
s=

-
=å

Method [6]
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FLISR using synchrophasor-based RTSE

SE1 à WMR1

SE2 à WMR2

SE3 à WMR3

Line 1 Line 2 Line 3
Normal operating conditions (no fault)

min(WMR1, WMR2, WMR3)=
= WMR2

Additional bus in Line 2
(topology changes)

Topology of SE2

≈
Real topology

Line 2 is faulted

Method [6]
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FLISR using synchrophasor-based RTSE

1

2

3 4 5 6

7

8

9
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11
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131415

16
17

18

1 km

Zsc

MV feeder characteristics
§ Location: Huissen, the Netherlands
§ Size: 18 buses
§ Nominal voltage: 10 kV (phase to phase)

Real-time model includes:
§ 3-phase unbalanced network
§ Metrological model of PMUs (simulated) 

installed in every node measuring nodal 
voltages and currents injections/absorptions

§ Metrological model of voltage and current 
sensors (including their uncertainty)

Validation using a real-time simulator [6]
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FLISR using synchrophasor-based RTSE - Performances
Validation via a real-time simulator [6]
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FLISR using synchrophasor-based RTSE - Performances

W2

W3
W4

W1

0   20 ms÷T1 = 

T 1

30 msT2 = 

T  2 T  3 T  4

61 msT3 = 11 msT4 = 

ØT1: depends on the fault position
within the PMU observation
window

ØT2: half of the PMU observation
window

ØT3: synchrophasor data latency
(assuming ideal network);

ØT4: computation time of the 17
state estimators

Total latency: 78 ÷ 98 ms
(without the

telecom network latency)

Latency assessment [6]
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On the joint class P+M 
synchrophasor estimation
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Synchrophasor Estimation Algorithms
Window based Synchrophasor Estimation Algorithms

Class Typical algorithms Advantages Drawbacks

DFT
based

Fourier analysis Low computational 
complexity, harmonic 

rejection

Spectral leakage,
Harmonic interference,

Off-nominal freq.Interpolated DFT

Wavelet based Recursive wavelet Harmonic rejection Computational complexity

Optimization 
based

WLS They usually provide
accurate estimates in 

combination with other 
methods 

Non deterministic: driven by 
optimality criteria

Kalman Filter

Taylor series 
based Dynamic Phasor

It intrinsically reflects the 
dynamic behaviors of power

systems
Computational complexity
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2. Long range leakage

3. Short range leakage 4. Harmonic interference

DFT-based synchrophasor estimation
Main sources of errors

1. Aliasing
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Ø Introduction of adequate anti-aliasing 
filters

Ø Increasing of the sampling frequency

Ø Interpolated DFT methods 

Ø Use of appropriate windowing 
functions

Ø Iterative compensation of the  self-
interaction

DFT-based synchrophasor estimation
Possible corrections

1. Aliasing 2. Long range leakage

3. Short range leakage 4. Harmonic interference
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Joint P+M class synchrophasor estimation

|𝑋 𝑘 |

𝑘

𝛿

Neg imagePos imageDFT bins

𝛿 = 𝑎 ⋅ 𝜀
𝑋 𝑘' + 𝜀 − 𝑋 𝑘' − 𝜀

𝑋 𝑘' − 𝜀 + 2 𝑋 𝑘' + 𝑋 𝑘' + 𝜀 , 𝑎 = 1.5 cos, 𝑎 = 2 hann

The IpDFT is a technique to extract the parameters 𝑓(, 𝐴( and 𝜑( of a sinusoidal 
waveform by interpolating the highest DFT bins of the signal spectrum. It mitigates the 
effects of incoherent sampling (𝑓(/∆𝑓 ∉ ℕ):
§ Interpolating the highest DFT bins è minimize spectral sampling

IpDFT problem solution for 𝐜𝐨𝐬𝛂 window functions [7]

𝑓! = 𝑘" + 𝛿 𝛥𝑓
𝜑! = ∠𝑋 𝑘" − 𝜋𝛿

𝐴!# = 4 ⋅ 𝑋(𝑘")
𝛿$ − 0.25
cos(𝜋𝛿)

𝐴!% = 𝑋 𝑘"
𝜋𝛿

sin 𝜋𝛿 𝛿$ − 1



SGSMA Tutorial – Distribution-Level PMUs and Applications – M. Paolone | 24.05.2021 38

Joint P+M class synchrophasor estimation

𝑋(𝑘)

IpDFT

𝑝 = 𝑃

IpDFT

Negative image
estimation

Negative image
compensation

𝛿

Estimated
Synchrophasor

yes

no

|𝑋 𝑘 |

𝑋() 𝑘 = 𝑋 𝑘 − 𝑋(* 𝑘

𝑋(* 𝑘 = 𝐴(𝑒)+,!𝑊(𝑘 − ⁄𝑓( Δ𝑓)

𝛿

DTFTDFT bins Fund neg imFund pos im
𝑘

Enhanced-IpDFT algorithm [7]
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Joint P+M class synchrophasor estimation

TVE
IEEE Std = 1.3%
e-IpDFT = 31%

FE
IEEE Std = 10 mHz
e-IpDFT = 1.6 Hz

RFE
e-IpDFT = 145 Hz/s 

e-IpDFTmax M-class IEEE Std Max Errors:
Enhanced-IpDFT algorithm: poor performance against OOBI



SGSMA Tutorial – Distribution-Level PMUs and Applications – M. Paolone | 24.05.2021 40

Joint P+M class synchrophasor estimation
Iterative-IpDFT algorithm [8]

𝛿

𝛿"

𝑋(𝑘)

e-IpDFT

𝑞 = 𝑄 & 𝐸- > 𝜆

Main tone
estimation & compensation

Estimated
Synchrophasor

yes

no

Interharmonic tone
estimation & compensation

e-IpDFT

e-IpDFT

𝑋. 𝑘 = 𝑋 𝑘 − 𝑋((𝑘)

𝑋( 𝑘 = 𝑋 𝑘 − 𝑋.(𝑘)

Fund toneDFT bins Int pos im
Int toneDTFT Int neg imFund neg im

Fund pos im
𝑘

𝛿

|𝑋 𝑘 |
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Joint P+M class synchrophasor estimation
Iterative-IpDFT algorithm performance and P+M compliance [8]
Static conditions
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Joint P+M class synchrophasor estimation
Iterative-IpDFT algorithm performance and P+M compliance [8]
Dynamic conditions
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Conclusions
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Conclusions
§ Future control and protection applications for power distribution networks 

are expected to make large use of PMUs.
§ PMU-based state estimation of power distribution networks should rely more 

on current measurements in order to not require extremely low accuracy 
levels on voltage synchrophasor measurements.

§ In order to minimize the duplication of devices, synchrophasor estimators be 
compliant with both P+M classes.

§ Example of applications that can directly benefit from these characteristics 
are:
o real-time situational awareness used by grid-aware control applications 

(i.e., OPF-based);
o PMU-based protection and fault location potentially replacing traditional 

schemes.
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Adaptive KF: estimation of the process model covariance from 
observations [9]

Measurement
model:

Process

model:

   zk = H x k + v k    p(v k ) ~  N 0,R k( )
measurement noise

vector

   x k = Akx k−1 +Bkuk + wk

process noise
vector

   p(wk ) ~  N 0,Qk( )
process noise

covariance matrix

measurements noise
covariance matrix

State-transition
matrix

controllable inputs
vector

Brief recap on standard KF theory

Historical challenges:
§ Process model should match the power-system state dynamics;
§ Robust computation of the process noise covariance matrix;
§ Complementary applications become more complicated (e.g., bad-data processing);
§ Higher computational time.
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sample covariance from
N past innovations

Adaptive KF: estimation of the process model covariance from 
observations [9]
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Maximum likelihood estimation of covariance matrix from the samples
(constrained convex optimization problem)

Adaptive KF: estimation of the process model covariance from 
observations [9]
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4

1

2

6

3

Bus Zero-injection bus
Load Transmission line I

V Voltage meas.
Current meas.

V V V V
5

460 m 73 m 72 m

1260 kVA

I

35 m

311 m

I
V

PV

2260 kVA

I

1260 kVA

I

1260 kVA

I

PV PV PV

PV Power transformerPV panels

EPFL 20kV dist. feeder (hosting 1MW BESS and 0.1 MW of PV, max load 0.3 MW) [10]

Voltages 3 x 5
Current injections 3 x 5

Zero-inj. buses 1
Measurements 66
State variables 36
Redundancy 1.8

Rated voltage 20 kV
Voltage sensors Capacitive 0.1-class
Current sensors Rogowsky 0.5-class

Adaptive KF: estimation of the process model covariance from 
observations [9]
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PMU meas. Plausibility
checks

Breaker
statuses

Topology
processor

Zero-inj.
buses

Pseudo-
meas.

Observability
analysis

State Estimation
Algorithm

Estimated
state

Bad-data
processor

only for WLS and KF
only for KF

Process
model

EPFL 20kV dist. feeder (hosting 1MW BESS and 0.1 MW of PV, max load 0.3 MW) [10]

Adaptive KF: estimation of the process model covariance from 
observations [9]
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Quasi-static conditions Quasi-static conditions

Voltage step (on the slack bus)

EPFL 20kV dist. feeder (hosting 1MW BESS and 0.1 MW of PV, max load 0.3 MW) [10]

Adaptive KF: estimation of the process model covariance from 
observations [9]


